Data C100/200, Midterm

Fall 2022

Name: \qquad

Email: \qquad @berkeley.edu

Student ID: \qquad

Name and SID of the person on your right: \qquad

Name and SID of the person on your left: \qquad

Instructions:

This midterm exam consists of $\mathbf{6 0}$ points spread out over $\mathbf{5}$ questions and the Honor Code and must be completed in the $\mathbf{1 1 0}$ minute time period ending at 9:00 PM, unless you have accommodations supported by a DSP letter.
Note that some questions have circular bubbles to select a choice. This means that you should only select one choice. Other questions have boxes. This means you should select all that apply. Please shade in the box/circle to mark your answer.
You must also write your Student ID at the top each page.

Honor Code [1 Pts]:

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I am the person whose name is on the exam and I completed this exam in accordance with the Honor Code.

Signature: \qquad

This page has been intentionally left blank.

1 Monopoly Mistakes [15 Pts]

It's the annual Monopoly World Championship! The finalists: Shawn, Amanda, Neil, and Annie are playing Monopoly, a board game where players pay a price to buy properties, which can then generate income for them. Each property can be owned by only one player at a time. At the end of the game, the player with the most money wins.

Shawn wants to figure out which properties are most worth buying. He creates a DataFrame income with data on the current game state, shown on the left. He also finds a DataFrame properties with data on Monopoly properties, shown on the right.

Both tables have 28 rows. For brevity, only the first few rows of each DataFrame are shown.

	Player	Property	Income Generated
$\mathbf{0}$	Shawn	Boardwalk	$\$ 425$
$\mathbf{1}$	Amanda	Park Place	$\$ 375$
$\mathbf{2}$	Neil	Marvin Gardens	$\$ 200$
$\mathbf{3}$	NaN	Kentucky Ave	NaN
$\mathbf{4}$	Shawn	Pennsylvania Ave	$\$ 150$
$\mathbf{5}$	Annie	Oriental Ave	$\$ 50$
$\mathbf{6}$	Amanda	Baltic Ave	$\$ 60$

income

	Property	Property Color	Purchase Price
$\mathbf{0}$	Park Place	Dark Blue	350.0
$\mathbf{1}$	Oriental Ave	Light Blue	100.0
$\mathbf{2}$	Vermont Ave	Light Blue	100.0
$\mathbf{3}$	Pacific Ave	Green	300.0
$\mathbf{4}$	Boardwalk	Dark Blue	400.0
$\mathbf{5}$	Illiniois Ave	Red	240.0
$\mathbf{6}$	Atlantic Ave	Yellow	260.0

- Player is the name of the player, as a str.
- Property is a property currently owned by the player, as a str.
- Income Generated is the amount of income a player has earned from that property so far, as a str.
- Property is the name of the property, as a str. There are 28 unique properties.
- Property Color is a color group that the property belongs to, as a str. There are 10 unique color groups, and each property belongs to a single group.
- Purchase Price is the price to buy the property, as a float.

Note: For properties that are not currently owned by any player, the P layer and Income Generated columns in the income table have a NaN value.
\qquad
(a) $[1 \mathrm{Pt}]$ What is the granularity of the income table?
\square

Solution:

Property
(b) [2 Pts] Which of the following line(s) of code successfully returns a Series with the number of properties each player owns? Select all that apply.
income.groupby('Player').agg(pd.value_counts)
income['Player'].value_counts()
income['Player', 'Property'].groupby('Player').size()
income.groupby('Player').size()

Solution: Option A is wrong because it returns a DataFrame with multiple columns. Options B and D are correct.
Option C will error because we attempt to select two column names with a single indexing operator, which will error.
(c) [5 Pts] He now decides to calculate the amount of profit from each property. He wants to store this in a column called Profit in the income DataFrame.
i. [2 Pts] To do this, he first has to transform the Income Generated column to be of a float datatype. Write one line of code to replace the old column with a new column, also called Income Generated, with the datatype modification described above. You may assume that each entry in Income Generated consists of a dollar sign (\$) followed by a number, except for the NaN values.

Solution:

```
income['Income Generated'] = income['Income Generated']
.str[1:].astype(float)
```

\qquad
ii. [3 Pts] Assuming that the answer to the last sub-part is correct, let's add a Profit column to the income DataFrame. Fill in the following blanks to do this, and please add arguments to function calls as you see appropriate.
Note: Profit is calculated by subtracting the purchase price from generated income.

```
combined_df = income.___A___(
```

\qquad

``` B _) income["Profit"] =
``` \(\qquad\)
``` C
```

$\alpha)[1 \mathrm{Pt}]$ What goes in the blank indicated by the letter A?
\square
$\beta)$ [1 Pt] What goes in the blank indicated by the letter B ?

$\gamma)[1 \mathrm{Pt}]$ What goes in the blank indicated by the letter C ?

Solution:

```
combined_df = income.merge(properties, on = "Property")
income["Profit"] = combined_df["Income Generated"]
- combined_df["Purchase Price"]
```

(d) [2 Pts] Regardless of your answer to the previous sub-part, assume we've successfully created the Profit column. Let's help Shawn see how well he's doing by finding the average profit he's made on the properties he owns. Which of the following line(s) of code does this? Select all that apply.income.groupby("Player")["Shawn"].agg(np.average)income[income["Player"]=="Shawn"]["Profit"].mean()income.loc[income["Player"]=="Shawn", "Profit"].mean()income.iloc[income["Player"]=="Shawn", "Profit"].mean()
(e) [5 Pts] Oh no! He realizes he's lost more money than he's made. To solve this problem, he begins by writing some Pandas code to merge the Property Color column into the income DataFrame and drops all rows with NaN values. He calls this DataFrame merged_df. Shown below are the first few rows.

	Player	Property	Income Generated	Profit	Property Color
$\mathbf{0}$	Shawn	Boardwalk	425.0	-25.0	Dark Blue
$\mathbf{1}$	Amanda	Park Place	375.0	25.0	Dark Blue
$\mathbf{2}$	Neil	Marvin Gardens	200.0	50.0	Yellow
$\mathbf{3}$	Shawn	Pennsylvania Ave	150.0	-100.0	Green
$\mathbf{4}$	Annie	Oriental Ave	50.0	0.0	Light Blue
$\mathbf{5}$	Amanda	Baltic Ave	60.0	0.0	Purple

merged_df

Shawn decides he will now only buy properties from a color group that he deems "profitable." He deems a color group "profitable" if at least 50% of the properties in the group that are currently owned by players have made a positive (non-zero) profit for those players.
Fill in the following lines of code to help him display a DataFrame with a subset of the rows in merged_df: the rows with properties that belong to profitable color groups. Your solution may use fewer lines of code than we provide.

```
def func(group):
```

merged_df.

Solution:

```
def func(group):
```

```
if sum(group['Profit'] > 0)/len(group['Profit'])>=0.5:
        return True
    return False
```

merged_df.groupby("Property Color").filter(func)
\qquad

2 Dungeons and Data [13 Pts]

Grog the ogre owns a drugstore near the village of Slimestone. One day, in a local dungeon, he discovers an ancient recipe for a health potion.

To test the recipe, Grog heads into Slimestone to find the first 50 villagers he sees, knocks them out with his club, and drags them back to his lair. Each of them sustains a large amount of damage from the club, as measured in "health points" (HP). Grog gives each of them a free sample of his new potion and observes how many HP are restored. He records various attributes about each study participant, as well as the number of HP that were restored by his potion.

	age	species	str	dex	con	int	wis	cha	restored
0	22	human	15	14	12	13	9	11	6
1	25	dwarf	19	14	18	8	9	12	13
3	36	human	13	9	13	7	19	17	10
\ldots									
48	121	gnome	17	10	25	16	13	21	9
49	372	elf	9	24	12	16	18	12	8

Data for Grog's experiment

The variables are:

- age: in years, an int.
- species: dwarf, elf, gnome, or human, stored as a str.
- str, dex, con, int, wis, cha: strength, dexterity, constitution, intelligence, wisdom, and charisma. Each is a number is an int between 1 and 30. For this problem, it doesn't matter what they mean.
- restored: the amount of HP restored by the potion (response variable), an int.

Grog wants to figure out about how many health points are usually restored, and also use regression modeling to figure out whether some types of villagers can expect to gain more from the potion than others.
(a) [1 Pt] Grog's sampling frame is the set of all villagers in Slimestone. Which of the following are true about the sample that Grog gets? Select all that apply.

It is a convenience sample

It is a probability sample\square It is a simple random sample
\square It is a random sample with replacement
\square We can be reasonably confident that the sample is representative of the sampling frame
(b) [1 Pt] Grog's first idea is to use a constant model to predict restored. He decides to minimize the MSE. What will be the optimal constant prediction?

The maximum of the restored column
The minimum of the restored column
The mean of the restored column
The median of the restored column
The mode of the restored column
(c) $[1 \mathrm{Pt}]$ What type of variable is the species column?

Qualitative, ordinal
Quantitative, continuous
Qualitative, nominal
Quantitative, discrete
(d) [2 Pts] Grog wants to run a multiple linear regression to predict the response, restored, from all the other variables, calculating the optimal parameters using the formula

$$
\hat{\theta}=\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1} \mathbb{X}^{T} \mathbb{Y}
$$

where \mathbb{Y} is the column vector (or 50×1 matrix) of responses, and \mathbb{X} is a $50 \times d$ matrix of numerical features. He needs to do something about the variable species, which is currently represented as str instead of a numerical value. He plans to use one-hot encoding. Which of the following could describe a correct implementation of one-hot encoding for species? Select all that apply, remembering that the species are dwarf, elf, gnome, and human.

Grog adds four columns representing the one-hot encoding of the species column, along with a bias column of all ones
Grog adds four columns representing the one-hot encoding of the species column, and does not include a bias column of all ones
Grog adds three columns representing the one-hot encoding of the species column, along with a bi as column of all ones
\square Each column that Grog adds to the matrix has a single entry equal to 1 , and the other 49 entries in the column are all 0 .
(e) [1 Pt] Grog writes a Python script to implement OLS linear regression from scratch, and uses it to run a regression with the full data set of 50 observations, using all of the other variables to predict the response restored.

He checks the MSE for his model's predictions, and he finds that it is even higher than the MSE for the constant model from part (b). Which of the following do you think is the best explanation for what happened?
Note: You may assume for this part that the $\mathbb{X}^{T} \mathbb{X}$ matrix is invertible.
He probably overfit the data, and that might be why he got such a high MSE.
\bigcirc He probably underfit the data, and he needs to add more features to the regression until his MSE goes down.

This should never happen with a correctly implemented OLS method. He must have a bug in his code.

Solution: Option A: Grog uses the full data set to train both models and computed the MSE on the same data, so even if he is overfitting, we wouldn't know based on the training MSE.

Option B: The constant model is the simplest model there is; any OLS linear regression model would be more complex (and thus less underfitting) than the constant model. This also does not explain why the MSE for the OLS model is higher.
(f) [3 Pts] Grog is still a little confused about what happened in part (e) but he has heard that when you have a lot of predictor variables, you might want to consider using regularization, such as the LASSO or Ridge regression, still using the MSE loss. Which of the following considerations might be a reason to prefer LASSO? Select all that apply.

LASSO is more likely than ridge to give an answer with most coefficients set to 0 , which might make the final prediction equation a little easier to understand.
Because LASSO uses L1 instead of L2, the LASSO solution $\hat{\theta}$ will not be affected much by outlier data points, even if they are extreme outliers.
LASSO regression has a closed form solution but Ridge regression does not.
Solution: Option A: We talked about this in class and section. LASSO has the tendency to set many values to 0 .
Option B: LASSO uses L1 for the regularization term, but the loss function is still squared loss $\left(\left(y_{i}-\hat{y}_{i}\right)^{2}\right)$. Thus, LASSO will also be affected by outlier data points.
Option C: Ridge has a closed form solution, LASSO doesn't.
(g) [2 Pts] Grog decides to use Ridge regression instead, and wants to use 5-fold cross-validation to select the hyperparameter. He takes his folds to be contiguous blocks, using the rows 0 to 9 for the first fold, 10 to 19 for the second, and so on.
\qquad

He notices that his data set is sorted by age, the first column, so the villagers in the first fold are much younger than the ones in the last fold. Which of the following ideas would allow him to resolve this problem and keep it from affecting the results? Select all that apply.

Don't use age as a predictor variable in the regressionRe-sort the data, in increasing order of the variable restored, and then use contiguous blocks for his foldsShuffle the rows of the data frame randomly, and then use contiguous blocks for his folds

There is nothing he can do to fix it, he just needs to start over and collect a new data set
(h) [2 Pts] Assume Grog has fixed the issue from the previous part to his satisfaction, and he now has 5 folds that he is happy with. He uses 5 -fold cross-validation to decide on the hyperparameter Q to use as the maximum squared L2 norm for the parameters. That is, any particular choice of Q means minimizing $\operatorname{MSE}(\theta)$ such that $\sum_{j=1}^{d} \theta_{j}^{2} \leq Q$.
Grog does 5 -fold cross-validation to evaluate a grid of 100 different values for Q ranging all the way from tiny values to enormous values of Q. He is surprised to find that, as Q gets larger and larger, the cross-validation MSE stops changing, so the top 13 values of Q all give exactly the same cross-validation estimate of MSE. What do you think could best explain this?

Obove a certain value of Q, he is overfitting so much that he is making an exactly correct prediction for every single training point, and once he reaches this point he can't overfit any more.
\bigcirc Above a certain value of Q, his answer is very close to the constant model, so the predictions are virtually identical.
Above a certain value of Q, his predictions will coincide exactly with the predictions for OLS linear regression.

Above a certain value of Q, his optimization algorithm is not able to converge to the optimal parameters.
Above a certain value of Q, the optimal parameters are so large that numerical overflow will make the calculation fail.

Solution: Recall from lecture that Q is the radius of the ball that we restrict our coefficients in. It is inversely related to the α regularization parameter we use in the other formulation or sklearn.
As Q gets larger, the ball gets bigger and the restrictions get looser; and at one point the ball will include the OLS solution and we will have no regularization at all.
\qquad

3 Beaver Bedtimes [9 Pts]

Brenda Beaver is building a dam, and she has been waking up earlier and earlier in the morning trying to build it faster. However, her friend Olivia Otter thinks Brenda is overworking herself, and that her dam production is suffering as a result.

To convince Brenda to get more sleep, Olivia created a DataFrame called production, shown below, with one row for each of the 31 days in the last month. For each day, Olivia recorded the amount of sleep Brenda got (in hours) and how many branches Brenda was able to add to her dam on that day. The first five rows of the DataFrame look like the left figure below:

Olivia's scatter plot
(a) [2 Pts] To help Olivia visualize this dataset, write one line of code to create a scatter plot of the two variables, with Sleep on the horizontal axis and Branches on the vertical axis. The scatter plot should also show a least-squares regression line and look similar to the plot above on the right.

```
import seaborn as sns
import matplotlib.pyplot as plt
```


Solution:

```
sns.lmplot(x = "Sleep",
y = "Branches",
data = production, fit_reg = True)
```

(b) [2 Pts] Olivia wants to know how the linear model performs on the data set. She calls the Sleep column x to remind herself it is the predictor variable, and calls the Branches column y to remind herself it is the response variable. Looking at the regression line from (a), fill in the blanks by selecting the appropriate choices.

For small values of x, our linear model tends to \qquad (1) \qquad y, and for large values of x, our linear model tends to \qquad (2) \qquad y.
(1)
Underpredict
\bigcirc Overpredict
(2)
2)

Underpredict
 Overpredict

Solution: We ended up giving everyone points for the second blank because it can be argued that the "large values" are from 6 to 8 , where the number of points above and below the lines are the same.
(c) [1 Pt] Olivia makes some more visualizations to evaluate the linear model. She makes a plot of the residuals $y-\hat{y}$ on the vertical axis against the predictor x on the horizontal axis. Which of the plots below best matches her plot?

\qquad
$\bigcirc \mathrm{A}$
\bigcirc B
$\bigcirc \mathrm{C}$
\bigcirc D
(d) [1 Pt] Olivia is thinking about using a transformation to make her model fit better. Which one transformation, from the following options, do you think is most likely to improve the fit?

Change the response variable to \log (Branches)
Change the predictor variable to \log (Sleep)
Change the response variable to Branches ${ }^{2}$
Change the predictor variable to $60 \times$ Sleep (so sleep is measured in minutes)
Solution: The shape of the scatter plot resembles the bottom right of the Tukey-Mosteller Bulge Diagram, so we can apply any of the four transformations indicated there: \sqrt{y}, $\log (y), x^{2}$, or x^{3}. The only option that fits is A.
(e) [2 Pts] Regardless of what you chose before, assume that Olivia comes to believe that the logarithms of x (Sleep) and y (Branches) are related, so she should actually use the prediction function

$$
f_{\theta}(x)=\theta_{0}+\theta_{1} \log (x),
$$

where $f_{\theta}(x)$ is the predicted value for $\log (y)$ (both logarithms are base e).
What is the prediction for y as a function of x, in terms of θ_{0} and θ_{1} ?
$\bigcirc \hat{y}=e^{\theta_{0}}+x^{\theta_{1}}$
$\hat{y}=e^{\theta_{0}} \cdot x^{\theta_{1}}$
$\widehat{y}=e^{\theta_{0}} \cdot \theta_{1} x$
$\bigcirc \hat{y}=e^{\theta_{0}} \cdot\left(\theta_{1}\right)^{x}$
$\widehat{\hat{y}}=e^{\theta_{0}}+\left(\theta_{1}\right)^{x}$

Solution: We have

$$
\log (y)=\theta_{0}+\theta_{1} \log (x)
$$

Raising e to the power of both sides:

$$
\begin{aligned}
e^{\log (y)} & =e^{\theta_{0}+\theta_{1} \log (x)} \\
y & =e^{\theta_{0}} \cdot e^{\theta_{1} \log (x)} \\
y & =e^{\theta_{0}} \cdot e^{\log \left(x^{\theta_{1}}\right)} \\
y & =e^{\theta_{0}} \cdot x^{\theta_{1}} .
\end{aligned}
$$

\qquad
(f) [1 Pt] Olivia wants to take a closer look at the distribution of y, the Branches column. Which of the Kernel Density Plots best matches the distribution of y ?

C

B

D
$\bigcirc \mathrm{A}$
\bigcirc B
$\bigcirc \mathbf{C}$
\bigcirc D

4 Booo-ba [11 Pts]

Casper, a ghost who loves milk tea boba, and Winnie, a witch who loves fruit tea boba, are partners in UC Berkeley's Boo 100 class. As a part of their class, they must conduct a research project that addresses some question they have about the UC Berkeley student population.

They are interested in whether UC Berkeley students prefer milk tea boba or fruit tea boba. They decide to collect a sample by publicly posting a poll on Reddit, an anonymous online forum that anyone can visit. Winnie posts the following question for the people on the forum to respond to:

```
Who thinks Fruit tea is better than Milk tea?
u/GoinGhost247
Hi all. My friend and I are interested in what the tea flavor preferences are throughout the school. It would be a great
help if you could respond to the poll! Optionally, please feel free to also comment responding to the question!
Poll
    - Fruit tea
    - Milk tea
Question: Why Fruit / Milk tea and which flavors are your favorite?
Comments ...
```

After responding to the poll, users may optionally leave a comment, and other users can optionally give the comment "upvotes" or "downvotes" depending on whether they like or dislike the comment. Casper and Winnie store the data from their Reddit poll in a DataFrame, responses. For brevity, only the first few rows of the DataFrame are shown.

Preference	Comment	
$\mathbf{0}$	Fruit	u/FruityBox: 'I love Fruit tea because its refreshing!' vote: $\mathbf{2}$
$\mathbf{1}$	Milk	u/MilkyDay: 'Milk tea because taro is my favorite. Taro tea for life!' vote: 12
$\mathbf{2}$	Fruit	u/Kulture: 'Did you know that Steave jobs has Sigma?' vote: -2
$\mathbf{3}$	Milk	u/CluelessAngel1999: 'no tears left to cry.' vote: 0
$\mathbf{4}$	Fruit	u/LemonTree: 'I had 7 orange fruit tea today. What is wrong with me?' vote: 9
$\mathbf{5}$	Milk	u/ALLCAPSKING: 'I LOVE MILK TEA!' vote: 8
$\mathbf{6}$	Milk	

```
responses
```

The Comment column has a text string in three parts: the commenter's user name in the format u/username, the actual comment in single quotes, and the "net vote," upvotes minus downvotes, the comment got (so 5 upvotes and 7 downvotes results in "vote: -2 " at the end). 30% of respondents did not comment, and have a value of None in the Comment column.

Note on edge cases: For all parts of this question dealing with regular expressions, you don't need to consider any edge cases beyond the example comments shown in the first six rows of responses. As long as your regex pattern works on the Comment strings shown in the DataFrame, and it is not trivializing the problem, you will get full credit.
(a) $[1 \mathrm{Pt}]$ What is their population of interest?

OAll students in Boo 100
All students at UC Berkeley
O All students at UC Berkeley on Reddit
\bigcirc All people on Reddit
(b) [1 Pt $]$ Is their sampling frame the same as their population of interest?
\bigcirc Yes
○ No
(c) [1 Pt] Assuming we want to learn more about users' boba preferences, which one of the following is a valid way of handling the missing data?

○ Fill all missing comments with the empty string " "
Delete all rows with a None value
(d) [2 Pts] First, they want to extract the comments (without the usernames or votes) and store them in a new column called Text. Write a Regex pattern to extract only the comments, enclosed in, but not including, the single quotes.

```
text_pattern = r"___"
responses["Text"] = responses["Comment"].str.extract(text_pattern)
```


Solution:

```
    text_pattern = r"'([^']+)'"
```

or
text_pattern = r"'(.*)'"
(e) [2 Pts] To assess each comment's popularity, they want to extract the net vote from the Comment column. They write a Regex pattern to create a new column called Vote with the net vote that each comment got. There is a space between vote: and the number. Which of the following options will correctly extract the number of votes? Select all that apply.

```
vote_pattern = r"
```

\qquad

``` "
responses["Vote"] = responses["Comment"].str.extract(vote_pattern)
```

\qquad
vote_pattern $=r " \backslash s([-\backslash d]+) "$
vote_pattern $=$ r"vote: $\backslash \mathrm{s}([-0-9]+)$ "
vote_pattern $=r "([-\backslash d]+) \$ "$
vote_pattern $=r " v o t e: \backslash s([\backslash d]+) "$

Solution: The first option is wrong because it will capture digits/numbers in usernames or the comment texts: the 4th row will give 7 not 9 .
The second and third options work.
The fourth option does not work because it does not match negative numbers-the 2nd row will have no match.
(f) [4 Pts] After creating the Text column in part e), Casper and Winnie decide to drop the Comment column. Additionally, they decide to limit their dataset to only rows with valid text strings. In other words, you may assume there are no None values in the Text column.
The first few rows of responses now look like the following:

	Preference	Vote	Text
$\mathbf{0}$	Fruit	2	I love Fruit tea because its refreshing!
$\mathbf{1}$	Milk	12	Milk tea because taro is my favorite. Taro tea for life!
$\mathbf{2}$	Fruit	-2	Did you know that Steave jobs has Sigma?
$\mathbf{3}$	Milk	0	no tears left to cry.
$\mathbf{4}$	Fruit	9	I had 7 orange fruit tea today. What is wrong with me?
$\mathbf{5}$	Milk	8	I LOVE MILK TEA!

responses after processing

Casper and Winnie realize that not all comments answer the original question they posed. Naturally, they wants to filter out the rows that do not have a relevant comment. Here, a "relevant comment" is one that contains the word "tea", but not as a substring of another word ("tears" and "teapot" do not count). It should match regardless of cases (e.g. "Tea", "tEa", "TEA", and "teA" all count as the word "tea").
Complete the following lines of code so that responses now contains only the rows with relevant comments (i.e. rows 2 and 3 should be filtered out).

Hint: valid_rows should be a boolean series indicating if each row contains a relevant comment.
valid_rows = responses["Text"] \qquad A \qquad
\qquad
responses = B \qquad
i. [3 Pts] What goes in the blank indicated by the letter A?
\square
ii. [1 Pt] What goes in the blank indicated by the letter B?

Solution:

```
valid_rows = responses["Text"].str.lower()
    .str.contains(r"[^\w]tea[^\w]")
responses = responses[valid_rows]
```


5 A lucky strike [11 Pts]

We have discovered rich stores of the valuable and rare mineral unobtanium. There are two different types of unobtanium: unobtanium-A, which is stable, and unobtanium-B, which is highly unstable. We carry out an experiment by starting a reaction that has no effect on unobtanium-A, but causes unobtanium-B to rapidly degrade with a "half-life" of γ milliseconds (ms) as soon as the reaction starts. That is, only half of the initial amount of unobtanium-B remains after $\gamma \mathrm{ms}$, only one quarter remains after $2 \gamma \mathrm{~ms}$, and so on. If β_{0} is the initial amount of unobtanium- A , and β_{1} is the initial amount of unobtanium-B, then the total amount of unobtanium remaining after x milliseconds is given by $f_{\theta}(x)$ the formula:

$$
f_{\theta}(x)=\beta_{0}+\beta_{1} 2^{-x / \gamma}
$$

Here $\theta=\left(\beta_{0}, \beta_{1}, \gamma\right)$, encoding all three model parameters.
We start the reaction, and at ten-millisecond intervals we take a noisy measurement of the total amount of unobtanium remaining. This gives us a data set with five data points, shown in the table below. x is the time since the reaction began, measured in milliseconds (ms), and y is the measured amount of unobtanium remaining $x \mathrm{~ms}$ after the reaction begins, measured in milligrams (mg).

x	y
0	19
10	13
20	10
30	5
40	5

Unobtanium reaction data

For easy reference, the first four negative powers of 2 are given below:

$$
\begin{aligned}
& 2^{-1}=\frac{1}{2}=0.5 \\
& 2^{-2}=\frac{1}{4}=0.25
\end{aligned}
$$

$$
2^{-3}=\frac{1}{8}=0.125
$$

$$
2^{-4}=\frac{1}{16}=0.0625
$$

\qquad
(a) [3 Pts] From briefly inspecting the data, we come up with a rough guess that the parameters are close to $\beta_{0}=4, \beta_{1}=16$, and $\gamma=10$. What is the MSE for these parameters, in units of mg^{2} ? Remember that the mean squared error is defined as

$$
\operatorname{MSE}(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2},
$$

where n is the number of observations, and $\hat{y}_{i}=f_{\theta}\left(x_{i}\right)$ is the prediction we would have made for y_{i} if we used the parameters $\theta=\left(\beta_{0}, \beta_{1}, \gamma\right)$.
$\bigcirc 0.2$
$\bigcirc 0.6$
$\bigcirc 1$
○ 1.4
$\bigcirc 2$
You will get full credit for choosing the right answer, but you can show your work in the box below if you want to get partial credit in case your answer is wrong:

Solution: The predictions would be $\hat{y}=(20,12,8,6,5)$, so the residuals are $e=(-1,1,2,-1,0)$. The mean squared error is $(1+1+4+1+0) / 5=7 / 5=1.4 \mathrm{mg}^{2}$.
(b) [3 Pts] Because our formula is not a linear model, we cannot use our closed-form expression for the MSE-minimizing model parameters. Instead, we could use gradient descent to search for the optimal model parameters, starting at our guess $\beta_{0}^{(0)}=4, \beta_{1}^{(0)}=16$, and $\gamma^{(0)}=10$. What will be the value of $\beta_{0}^{(1)}$, the intercept parameter after one step of gradient descent? Assume we use learning rate $\alpha=0.5$.

Hint: You will save some time if you don't calculate more derivatives than you need to.

Solution: Again, the residuals are $e=(-1,1,2,-1,0)$, and we can calculate the gradient by taking partial derivatives:

$$
\begin{aligned}
\frac{\partial}{\partial \beta_{0}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} 2^{-x_{i} / \gamma}\right)^{2} & =\frac{-2}{n} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} 2^{-x_{i} / \gamma}\right) \\
& =\frac{-2}{n} \sum_{i=1}^{n} e_{i} \\
& =\frac{-2}{5}
\end{aligned}
$$

If we use the learning rate 0.5 , then $\beta_{0}^{(1)}=\beta_{0}^{(0)}-0.5\left(-\frac{2}{5}\right)=4.2$.
(c) [2 Pts] Now suppose that, before we fit our model, we learn that another research group has discovered that the half-life of unstable unobtanium is exactly ten milliseconds $(\gamma=10)$. Now, instead of estimating γ, we can just plug in $\gamma=10$. Better still, we don't have to do gradient descent anymore; we can estimate $\beta=\left(\beta_{0}, \beta_{1}\right)$ using linear regression.

If we construct the right matrix \mathbb{X}, we will get a closed form for our estimate:

$$
\hat{\beta}=\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1} \mathbb{X}^{T} \mathbb{Y}
$$

where \mathbb{Y} is the column vector (or $n \times 1$ matrix) representing the response. Which of the following choices is the correct matrix \mathbb{X} ?

0	1
10	0.5
20	0.25
30	0.125
40	0.0625

Solution: With $\gamma=10$, our model is $f_{\theta}(x)=\beta_{0}+\beta_{1} 2^{-x / 10}$. Our design matrix would therefore have two columns: one bias/intercept column of all ones, one column with our feature $2^{-x / 10}:\left\{2^{0}, 2^{-1}, \ldots, 2^{-4}\right\}$.
(d) [3 Pts] Continue to assume that we know $\gamma=10$ so we are only estimating β_{0} and β_{1}. Even before we estimate the model, what can we be sure will be true about the fitted values \hat{y} and the residuals $e=y-\hat{y}$ for the estimated model? Select all that apply.
Note: In the following options, x represents time in milliseconds.
\square If we plot the residuals e against the time variable x, we will not see any clear pattern in the plot.
The residuals will add up to zero.
The residuals will be uncorrelated with x.The residuals will be highly correlated with the fitted values \hat{y}.

The residuals in the left half of the plot will not be as spread out as the ones in the right half of the plot.
The fitted values \hat{y} will have smaller variance than the original y values.
Solution: Again, our model is $f_{\theta}(x)=\beta_{0}+\beta_{1} 2^{-x / 10}$. Note the only feature is $2^{-x / 10}$ and the time x itself is not a feature.

Option A is wrong because x is not a feature; we can't be sure if there will be a pattern in the residual plot. Even if x is a feature, there will still be patterns in the residual plot if the relationship between the response and the predictor is not linear.
Option B is a fact from OLS.
Option C is wrong. It is a fact that in OLS the residuals are uncorrelated with the predictor variables (proved in HW6), but here the predictor variable is not x (it's $2^{-x / 10}$) so we can't be sure about the correlation between the residuals and x.

Option D is wrong. Since the fitted values \hat{y} are in the column space of the design matrix, the residuals will be orthogonal to the fitted values and therefore uncorrelated.
Option E is wrong. We can't be sure of the shape and spread of the residual plot before fitting the model.
Option F is correct. We showed that the variance of the original y values are the sum of the variance of the fitted values \hat{y} and the variance of the residuals ($\sigma_{y}^{2}=\sigma_{\hat{y}}^{2}+\sigma_{e}^{2}$). Therefore, $\sigma_{y}^{2}>\sigma_{\hat{y}}^{2}$.
\qquad

You are done with the Midterm! Congratulations!

Use this page to draw your Halloween costume!

Fall 2022 Data C100/C200 Midterm Reference Sheet

Pandas

Suppose df is a DataFrame; s is a Series. pd is the Pandas package.

Function	Description
df [col]	Returns the column labeled col from df as a Series.
df[[col1, col2]]	Returns a DataFrame containing the columns labeled coll and col2.
s.loc[rows] / df.loc[rows, cols]	Returns a Series/DataFrame with rows (and columns) selected by their index values.
s.iloc[rows] / df.iloc[rows, cols]	Returns a Series/DataFrame with rows (and columns) selected by their positions.
s.isnull() / df.isnull()	Returns boolean Series/DataFrame identifying missing values
s.fillna(value) / df.fillna(value)	Returns a Series/DataFrame where missing values are replaced by value
df.drop(labels, axis)	Returns a DataFrame without the rows or columns named labels along axis (either 0 or 1)
df.rename(index=None, columns=None)	Returns a DataFrame with renamed columns from a dictionary index and/or columns
df. sort_values(by, ascending=True)	Returns a DataFrame where rows are sorted by the values in columns by
s.sort_values(ascending=True)	Returns a sorted Series.
s.unique()	Returns a NumPy array of the unique values
s.value_counts()	Returns the number of times each unique value appears in a Series
pd.merge(left, right, how='inner', on='a')	Returns a DataFrame joining DataFrames left and right on the column labeled a; the join is of type inner
left.merge(right, left_on=col1, right_on=col2)	Returns a DataFrame joining DataFrames left and right on columns labeled coll and col2.
df.pivot_table(index, columns, values=None, aggfunc='mean')	Returns a DataFrame pivot table where columns are unique values from columns (column name or list), and rows are unique values from index (column name or list); cells are collected values using aggfunc. If values is not provided, cells are collected for each remaining column with multi-level column indexing.
df.set_index(col)	Returns a DataFrame that uses the values in the column labeled col as the row index.
df.reset_index()	Returns a DataFrame that has row index 0,1 , etc., and adds the current index as a column.
s.astype(dtype)	Converts the Series s to of data type dtype in place.
Let grouped = df.groupby (by) where by can be a column label or a list of labels.	
Function	Description
grouped.count ()	Return a Series/DataFrame containing the size of each group, excluding missing values
grouped.size()	Return a Series containing size of each group, including missing values
grouped.mean()/grouped.min()/grouped.max() Return a Series/DataFrame containing mean/min/max of each group for each column, excluding missing values	
grouped.filter(f) grouped.agg(f)	Filters or aggregates using the given function f
Function Description	
s.str.len() Returns a Series containing length of each string	
s.str.lower()/s.str.upper() Returns a Series containing lowercase/uppercase version of each string	
s.str.replace(pat, repl) Returns a Series after replacing occurences of substrings matching regular expression pat with string repl	
s.str.contains(pat)	s a boolean Series indicating whether a substring matching the regular expression pat is contained string
s.str.extract(pat)	s a Series of the first subsequence of each string that matches the regular expression pat. If pat ns one group, then only the substring matching the group is extracted

Visualization

Matplotlib: x and y are sequences of values.

Function	Description
plt. plot (x, y)	Creates a line plot of x against y
plt. scatter (x, y)	Creates a scatter plot of x against y
plt. hist $(x$, bins=None $)$	Creates a histogram of x; bins can be an integer or a sequence
plt. bar $(x$, height $)$	Creates a bar plot of categories x and corresponding heights height

Tukey-Mosteller Bulge Diagram.

Seaborn: x and y are column names in a DataFrame data.

Function

sns.countplot(data, x)
sns.histplot(data, x, kde=False)
sns.displot(x, data, rug $=$ True, kde $=$ True
sns.boxplot(data, $\mathrm{x}=$ None, y)
sns.violinplot(data, $x=$ None, y)
sns.scatterplot(data, $x, y)$
sns.lmplot(x, y, data, fit_reg=True)
sns.jointplot(x, y, data, kind)

Description

Create a barplot of value counts of variable \times from data
Creates a histogram of x from data; optionally overlay a kernel density estimator. displot is similar but can optionally overlay a rug plot.

Create a boxplot of y, optionally factoring by categorical x, from data. violinplot is similar but also draws a kernel density estimator of y.

Create a scatterplot of x versus y from data
Create a scatterplot of x versus y from data, and by default overlay a least-squares regression line

Combine a bivariate scatterplot of x versus y from data, with univariate density plots of each variable overlaid on the axes; kind determines the visualization type for the distribution plot, can be scatter, kde or hist

Regular Expressions

List of all metacharacters: . ^ \$ * + ?] [\ | () \{ \}

Operator	Description	Operator	Description
.	Matches any character except \n	*	Matches preceding character/group zero or more times
11	Escapes metacharacters	?	Matches preceding character/group zero or one times
1	Matches expression on either side of expression; has lowest priority of any operator	+	Matches preceding character/group one or more times
$\backslash \mathrm{d}, \backslash \mathrm{w}, \backslash \mathrm{s}$	Predefined character group of digits (0-9), alphanumerics (a-z, A-Z, 0-9, and underscore), or whitespace, respectively	^, \$	Matches the beginning and end of the line, respectively
$\backslash \mathrm{D}, \backslash \mathrm{W}, \backslash \mathrm{S}$	Inverse sets of \d, \w, \s, respectively	()	Capturing group used to create a sub-expression
\{m\}	Matches preceding character/group exactly m times	[]	Character class used to match any of the specified characters or range (e.g. [abcde] is equivalent to [a-e])
\{m, n\}	Matches preceding character/group at least m times and at most n times if either m or n are omitted, set lower/upper bounds to 0 and ∞, respectively	[^]	Invert character class; e.g. [^a-c] matches all characters except a, b, c
Function	Description		
re.match(pattern, string)		more chara	s at beginning of string matches pattern, else None
re.search(pattern, string)		more chara	s anywhere in string matches pattern, else None
re.findall(pattern, string)		rlapping m	es of pattern in string (if none, returns empty list)
re.sub(pattern, repl, string) Returns string after replacing all occurrences of pattern with repl			

Modified lecture example for a single capturing group:

```
lines = '169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET ... HTTP/1.1"'
re.findall(r'\[\d+\/(\w+)\/\d+:\d+:\d+:\d+ .+\]', line) # returns ['Jan']
```


Modeling

Concept	Formula	Concept
Variance σ_{x}^{2}	$\frac{1}{n} \sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}$	Correlation r

L_{1} loss	$L_{1}(y, \hat{y})=\|y-\hat{y}\|$	Linear regression prediction of y	$\hat{y}=a+b x$
L_{2} loss	$L_{2}(y, \hat{y})=(y-\hat{y})^{2}$	Least squares linear regression, slope \hat{b}	$\hat{b}=r \frac{\sigma_{y}}{\sigma_{x}}$

Empirical risk with loss L

$$
R(\theta)=\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \hat{y}_{i}\right)
$$

Ordinary Least Squares

Multiple Linear Regression Model: $\hat{\mathbb{Y}}=\mathbb{X} \theta$ with design matrix \mathbb{X}, response vector \mathbb{Y}, and predicted vector $\hat{\mathbb{Y}}$. If there are d features plus a bias/intercept, then the vector of parameters $\theta=\left[\theta_{0}, \theta_{1}, \ldots, \theta_{d}\right]^{T} \in \mathbb{R}^{d+1}$. The vector of estimates $\hat{\theta}$ is obtained from fitting the model to the sample (\mathbb{X}, \mathbb{Y}).

Concept	Formula	Concept	Formula		
Mean squared error	$R(\theta)=\frac{1}{n}\\|\mathbb{Y}-\mathbb{X} \theta\\|_{2}^{2}$	Normal equation			
Least squares estimate,	Residual vector, e	$\mathbb{X}^{T} \mathbb{X} \hat{\theta}=\mathbb{X}^{T} \mathbb{Y}$			
if \mathbb{X} is full rank	$\hat{\theta}=\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1} \mathbb{X}^{T} \mathbb{Y}$		$e=\mathbb{Y}-\hat{\mathbb{Y}}$		

	Multiple R^{2} (coefficient of determination)	$R^{2}=\frac{\text { variance of fitted values }}{\text { variance of } y}$						
Ridge Regression L2 Regularization	$\frac{1}{n}\\|\mathbb{Y}-\mathbb{X} \theta\\|_{2}^{2}+\alpha \sum_{i=1}^{d} \theta_{i}^{2}$	Ridge Regression (constrained form)	$\frac{1}{n}\\|\mathbb{Y}-\mathbb{X} \theta\\| \\|_{2}^{2}$ such that $\sum_{i=1}^{d} \theta_{i}^{2} \leq Q$					
Ridge regression estimate (closed form)	$\hat{\theta}_{\text {ridge }}=\left(\mathbb{X}^{T} \mathbb{X}+n \alpha I\right)^{-1} \mathbb{X}^{T} \mathbb{Y}$							
LASSO Regression L1 Regularization	$\frac{1}{n}\\|\mathbb{Y}-\mathbb{X} \theta\\|_{2}^{2}+\alpha \sum_{i=1}^{d}\left\|\theta_{i}\right\|$	LASSO Regression (constrained form)	$\frac{1}{n}\\|\mathbb{Y}-\mathbb{X} \theta\\|_{2}^{2}$ such that $\sum_{i=1}^{d}\left\|\theta_{i}\right\| \leq Q$					

Scikit-Learn

Suppose sklearn.model_selection and sklearn. linear_model are both imported packages.

Package	Function(s)	Description
sklearn. linear_model	LinearRegression(fit_intercept=True)	Returns an ordinary least squares Linear Regression model.
	LassoCV(fit_intercept=True),	Returns a Lasso (L1 Regularization) or Ridge (L2 regularization) linear model, respectively, and picks the best model by cross validation.
	RidgeCV (fit_intercept=True)	Fits the scikit-learn model to the provided X and y.
	model.fit (X, y)	Returns predictions for the X passed in according to the fitted model.
	model.predict(X)	Estimated coefficients for the linear model, not including the intercept term.
model.coef_	model.intercept_	Bias/intercept term of the linear model. Set to 0.0 if fit_intercept=False.
sklearn.model_selection	train_test_split(*arrays, test_size=0.2)	Returns two random subsets of each array passed in, with 0.8 of the array in the first subset and 0.2 in the second subset.

