Data 100/200, Midterm

Spring 2024

Name: \qquad
Email: \qquad @berkeley.edu

Student ID: \qquad

Name and SID of the person on your right: \qquad
Name and SID of the person on your left: \qquad

Instructions:

This exam consists of $\mathbf{7 0}$ points spread out over $\mathbf{6}$ questions and the Honor Code certification. The exam must be completed in $\mathbf{1 1 0}$ minutes unless you have accommodations supported by a DSP letter.

Note that some questions have circular bubbles to select a choice. This means that you should only select one choice. Other questions have boxes. This means you should select all that apply. These will always have at least one correct answer. Please shade in the box/circle to mark your answer.
You must write your Student ID number at the top of each page.

Points Breakdown:

Question	Q1	Q2	Q3	Q4	Q5	Q6
Points	14	11	12	11	11	10

Honor Code [1 Pt]:

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I am the person whose name is on the exam, and I completed this exam in accordance with the Honor Code.

Signature:

This page has been intentionally left blank.
\qquad

1 Pandas Express [14 Pts]

This question involves coding. All code for each part, where applicable, must be written in Python. Assume that the pandas library has been imported as pd, the numpy library has been imported as np, and the Python RegEx library has been imported as re.

Milad is a big fan of the data-science-themed restaurant, Pandas Express. He tracks Data 100 staff members' orders at the restaurant in a DataFrame called orders. Descriptions of its columns and its first five rows can be found below:

- name: Name of a Data 100 staff member (type = str).
- item: The food item they ordered (type = str).
- size: The portion size of the item - small, medium, or large (type = str).
- veg: 0 if the item is not vegetarian, 1 if the item is vegetarian (type = numpy.int 64).
- premium: 0 if the item is not a premium item, 1 if the item is a premium item (type $=$ numpy.int64).
- price: The price of the order in dollars (type = numpy.float 64).

	name	item	size	veg	premium	price
$\mathbf{0}$	Sean	Orange Chicken	large	0	0	11.4
$\mathbf{1}$	Brandon	Chow Mein	medium	1	0	8.7
$\mathbf{2}$	Brandon	Eggplant Tofu	small	1	0	5.4
$\mathbf{3}$	Jessica	Honey Walnut Shrimp	medium	0	1	11.7
$\mathbf{4}$	Sean	Broccoli Beef	small	0	0	5.4

(a) [2 Pts] Which of the following lines of code will output a DataFrame only containing rows with dishes that are both vegetarian AND have a price above $\$ 7.50$? Select all that apply.A. orders[(orders["veg"]==1) and (orders["price"]>7.5)]B. orders.loc[(orders["veg"]==1) \& (orders["price"]>7.5)]C. orders[orders.isin(["veg" == 1, "price" > 7.5])]D. orders[(orders["veg"]==1) | (orders["price"]>7.5)]
(b) [2 Pts] Fill in the blanks below to create above_5: a DataFrame with the same structure as orders but only containing rows that include an item that was ordered more than 5 times.

```
above_5 = orders.___A___(___B____).___C___(lambda sf: _____D_____)
```

(i) Fill in blank A:
\square
(ii) Fill in blank B:
\square
(iii) Fill in blank C:
\square
(iv) Fill in blank D:
\square
(c) [2 Pts] Milad determines that the main ingredient of each item is its last word (i.e., the main ingredient of "Orange Chicken" is "Chicken"). He wishes to store each main ingredient in a new column in orders called main, as seen below:

	name	item	size	veg	premium	price	main
$\mathbf{0}$	Sean	Orange Chicken	large	0	0	11.4	Chicken
$\mathbf{1}$	Brandon	Chow Mein	medium	1	0	8.7	Mein
$\mathbf{2}$	Brandon	Eggplant Tofu	small	1	0	5.4	Tofu
$\mathbf{3}$	Jessica	Honey Walnut Shrimp	medium	0	1	11.7	Shrimp
$\mathbf{4}$	Sean	Broccoli Beef	small	0	0	5.4	Beef

Which of the following options will correctly fill in the blank to create the main column?

Select all that apply.

```
orders["main"] =
```

\qquadA. orders["item"].str.split().str[-1]
B. orders["item"].str[-1]C. orders["item"].str.contains(r"\s*(\w+)")D. orders["item"].str.extract (r" (\w+) \$")
(d) [2 Pts] Suppose we are given a list called exclude_mains. Fill in the blank to create entrees: a DataFrame with the same structure as orders but only containing rows with a main NOT in exclude_mains. Assume that the main column was created correctly.

```
entrees = orders[
```

\qquad _]

Fill in the blank. Only solutions which do not iterate through exclude_mains will receive full credit.
(e) [2 Pts] Fill in the blanks below to create main_revenue: a Series that displays the total money that each main generated across all orders. Assume that the ma in column was created correctly.

```
main_revenue = orders.
```

\qquad

``` A
``` \(\qquad\)
``` (___B B
``` \(\qquad\)
``` )
``` \(\qquad\)
``` C
``` \(\qquad\)
``` ].
``` \(\qquad\)
``` D
``` \(\qquad\)
(i) Fill in blank A:

(ii) Fill in blank B:
\(\square\)
(iii) Fill in blank C:
\(\square\)
(iv) Fill in blank D:
\(\square\)
\(\qquad\)
(f) [2 Pts] Using main_revenue from the previous part, fill in the blanks below to find the main which generated the median amount of money across all orders. Assume that there are an odd number of entries in main_revenue.
Hint: a // b returns a divided by b rounded down to the nearest integer.
position = \(\qquad\) A \(\qquad\) // 2
main_revenue. \(\qquad\) B \(\qquad\) (). \(\qquad\) C \(\qquad\) [\(\qquad\) D \(\qquad\)
(i) Fill in blank A:
\(\square\)
(ii) Fill in blank B:

(iii) Fill in blank C:
\(\square\)
(iv) Fill in blank D:
\(\square\)
\(\qquad\)
(g) [2 Pts] Milad creates two new DataFrame objects: normal and premium, which contain normal and premium prices for each size, respectively.
\begin{tabular}{lrrllcr}
& size & normal_price & & \multicolumn{3}{c}{ size } \\
\cline { 5 - 7 } \cline { 5 - 6 } & small & 5.4 & & premium_price \\
\(\mathbf{0}\) & s.arge & 11.0 \\
\(\mathbf{1}\) & medium & 8.7 & & \(\mathbf{1}\) & medium & 11.7 \\
\(\mathbf{2}\) & large & 11.4 & & \(\mathbf{2}\) & small & 6.9 \\
& & & & & \\
& normal & & & & premium
\end{tabular}

Fill in the blanks to create a DataFrame called prices (shown below), which includes a new column diff displaying the absolute difference between each size.
\begin{tabular}{rrrrr}
& size & normal_price & premium_price & diff \\
\hline \(\mathbf{0}\) & small & 5.4 & 6.9 & 1.5 \\
\(\mathbf{1}\) & medium & 8.7 & 11.7 & 3.0 \\
\(\mathbf{2}\) & large & 11.4 & 11.0 & 0.4
\end{tabular}
```

prices = normal.___A_____B___)
prices["diff"] =

```
\(\qquad\)
``` C
``` \(\qquad\)
(i) Fill in blank A:
\(\square\)
(ii) Fill in blank B:
\(\square\)
(iii) Fill in blank C:
\(\square\)
\(\qquad\)

\section*{2 Exploratory Dart-a Analysis [11 Pts]}

A local arcade has given Nikhil access to data from their electronic dart boards. The arcade records every game played and the players who participated (players can only play each game once). He stores this data in a DataFrame called darts. Descriptions of its columns and its first five rows can be found below:
- player_id: Randomly-generated unique identifier for each player (type= numpy . int 64).
- game_id: Randomly-generated unique identifier for each game of darts (type = numpy . int 64).
- game_type: The type of darts game played: 301, 501, or 701 (type = numpy .int 64).
- win: 1 if the player won that given game, 0 if not (type = numpy. int 64).
- player_score: Player's average score for a given game (type = numpy.float 64).
\begin{tabular}{lrrrrr}
& player_id & game_id & game_type & win & player_score \\
\hline \(\mathbf{0}\) & 123 & 14261 & 301 & 1 & 51.20 \\
\(\mathbf{1}\) & 429 & 14261 & 301 & 0 & 45.12 \\
\(\mathbf{2}\) & 123 & 24550 & 501 & 0 & 53.09 \\
\(\mathbf{3}\) & 429 & 24550 & 501 & 1 & 38.71 \\
\(\mathbf{4}\) & -99 & 12345 & 701 & 0 & 23.88
\end{tabular}
(a) [1 Pt] What is the minimum set of columns that form the primary key of this dataset? Write the label(s) of the column or group of columns.
\(\square\)
(b) [2 Pts] Which variable type best describes each of the following columns of darts?
\begin{tabular}{cccc}
Quantitative & Quantitative & Qualitative & Qualitative \\
Continuous & Discrete & Ordinal & Nominal
\end{tabular}
(i) player_id
(ii) player_score
\(\qquad\)
(c) [2 Pts] Some values of player_id are missing, represented by -99. Which method below is NEVER appropriate to deal with missing values in player_id?A. Keeping it as is (don't do anything).B. Removing rows with missing values.C. Imputing with the mean of the column.D. Imputing with the mode of the column.
(d) [4 Pts] Nikhil wants to view each player's proportion of wins for each game_type and generates each DataFrame shown below. Assume that only the first five rows of darts were used.
(i) Which method by itself was used to generate this DataFrame?
game_type 301501701
\begin{tabular}{rrrr}
player_id & & & \\
\hline-99 & 0 & 0 & 0 \\
123 & 1 & 0 & 0 \\
429 & 0 & 1 & 0
\end{tabular}
A. .groupby () with .mean()
B. .value_counts()C. .pivot_table()
\(\bigcirc\)
D. . \(\operatorname{agg}()\)
(ii) Which method by itself was used to generate this DataFrame?
\begin{tabular}{rrr}
player_id & & game_type \\
\hline-99 & 701 & 0 \\
\hline 123 & 301 & 1 \\
& 501 & 0 \\
429 & 301 & 0 \\
& 501 & 1
\end{tabular}A. .groupby () with .mean()B. .value_counts()C. .pivot_table()

○ D. .agg ()
(e) [2 Pts] Nikhil writes the following lines of code as part of his exploratory data analysis. Under what condition will Nikhil's code print True?
```

counts = darts[darts["win"] == 1]["game_id"].value_counts()
print(sum(counts != 1) == 0)

```
A. Each player only plays in each game once.B. Each player has won at least one game.C. There is exactly one winner per game.D. There are no repeated values of game_id.

\section*{3 Free Samples [12 Pts]}

The professors want to conduct a mid-semester survey. They wish to gather feedback from all the students enrolled in Data 100/200 but have determined that it will be easier to take a small sample instead. They propose a couple of different methods to record this survey.
(a) [3 Pts] Suppose the professors survey by asking the first 20 students who attend Professor Norouzi's office hours to fill out a form.
(i) In one sentence or less: what is the population of interest?
\(\square\)
(ii) Which of the following statements are true regarding this procedure? Select all that apply.
A. This is a simple random sample.
B. This is a convenience sample.
C. The results will likely have selection bias.D. The results will likely have chance error.
(b) [4 Pts] The professors opt for a different method. At the end of the most recent lecture, the professors assign a unique number to each person in the crowd, then uniformly and randomly select 20 numbers and have the corresponding individuals fill out the survey.
(i) In one sentence or less: what is the sampling frame of this method?
\(\square\)
(ii) Which of the following groups of individuals are in the sampling frame but NOT in the population of interest? Select all that apply.
A. Students who did not attend the lecture.B. Students who attended the lecture online.C. Individuals who are not enrolled in the course but attended the lecture.
D. TAs who were at the lecture.

For the remainder of this question, the Python RegEx library has been imported as re. For all parts, you will only need to worry about the example strings given to you and may assume that these examples cover all edge cases.
(c) [2 Pts] The professors want to analyze feedback on particular assignments (projects, labs, and homeworks) and create a RegEx pattern called assignment_pattern. Given the example output below, which RegEx patterns could be assignment_pattern? Select all that apply.
```

assignment_string = "I liked Project 1, Lab 2, and Homework 3"
re.findall(assignment_pattern, assignment_string)
['Project 1', 'Lab 2', 'Homework 3']

```A. r"Homework \s \(\backslash d+|L a b \backslash s \backslash d+| P r o j e c t \backslash s \backslash d+"\)B. r" [Homework|Lab|Project] \s \d+"C. r"Homework|Lab|Project \s \(\backslash d+"\)D. \(r " \backslash w+\backslash s \backslash d+"\)
(d) [3 Pts] What will be the output of the code snippet below? Recall that re.findall returns a list of matches.
```

feedback_str = "Homework 6 was hard. However, I was honestly proud to finish!"
re.findall(r"[Hh]o\w*\s(\w+)", feedback_str)

```

Put your answer in list format.

\section*{4 Box Scores and Box Plots [11 Pts]}

For this question, assume that the seaborn library has been imported as sns and the matplot lib pyplot library has been imported as plt.

Ishani is a fantasy sports champion who wants to use her data science skills to get a head start next season. She records last season's players' team, position, number of games played, and average number of fantasy points per game, storing the results in a DataFrame called players. The first 5 rows are given to you below.
\begin{tabular}{lrrrrr}
& name & team & position & games_played & points_per_game \\
\hline \(\mathbf{0}\) & CeeDee Lamb & DAL & WR & 17 & 23.7 \\
\(\mathbf{1}\) & Josh Allen & BUF & QB & 17 & 23.1 \\
\(\mathbf{2}\) & Christian McCaffrey & SF & RB & 16 & 24.5 \\
\(\mathbf{3}\) & Tyreek Hill & MIA & WR & 16 & 23.5 \\
\(\mathbf{4}\) & Jalen Hurts & PHI & QB & 17 & 21.0
\end{tabular}
(a) [2 Pts] Which of the following visualization types are appropriate to visualize the distribution of games_played? Select all that apply.
A. Histogram
C. Violinplot
B. Hexplot
D. Scatterplot
(b) [2 Pts] Ishani creates a DataFrame called output using the following code:
```

total = players["games_played"] * players["points_per_game"]
players["total"] = total
output = players.groupby("team")[["total"]].mean().reset_index()

```

Which of the following lines of code are best suited to visualize the relationship between both columns of output? Select all that apply.
A. sns.violinplot(data = output, \(\mathrm{x}=\) "total");
B. sns.boxplot(data = output, \(x=\) "team", \(y=\) "total")
\(\square\) C.plt.bar(x = output["team"], height = output["total"])
D. sns.countplot(data = output, \(x=\) "team")
(c) [2 Pts] Which of the following pieces of information can you always determine by looking at a box plot? Select all that apply.
A. QuartilesC. Mean
B. Existence of outliers
\(\square\) D. Mode
(d) [3 Pts] For the subparts of this question, select the best choice to fill in each blank of the below statement:

The first step of making a Kernel Density Estimate (KDE) curve is to place a kernel at
\(\qquad\)
\(\qquad\) . Next, you normalize each kernel so that \(\qquad\) B \(\qquad\) and sum the normalized kernels. One key value to set is the bandwidth parameter \(\alpha\), which determines the _______ of our KDE curve.
(i) Fill in Blank A:A. The minimum and maximum
B. Every data pointC. Some data points, depending on \(\alpha\)
D. None of the above
(ii) Fill in Blank B:A. Each kernel has an area of \(\alpha\)B. Each kernel has an area of 1C. The total area under the KDE curve is 1
D. None of the above
(iii) Fill in Blank C:
A. HeightB. SmoothnessC. AreaD. None of the above
\(\qquad\)
(e) [1 Pt] Ishani generates the following KDE curves from the points_per_game column:
A.

C.

D.

Which of the above plots is NOT a valid KDE curve?
\(\bigcirc \mathrm{A}\)B
\(\bigcirc \mathrm{C}\)D
(f) [1 Pt] Suppose you have two variables, \(x\) and \(y\), whose relationship can be linearized by performing a log transformation on \(x\). Which plot most likely represents the original relationship between \(x\) and \(y\) ?

\(\qquad\)

\section*{5 Loss Boss [11 Pts]}

Angela and Shiny have a dataset with \(n\) datapoints: \(\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}\). For each datapoint \(i, x_{i} \in R\) is the feature and \(y_{i} \in R\) is the target output.
(a) [5 Pts] Angela proposes to model some particular observation \(y_{i}\) as follows:
\[
\hat{y}_{i}=\frac{1}{\theta_{1}} x_{i}
\]
(i) Take the derivative with respect to \(\theta_{1}\) of the Mean Squared Error (MSE) of Angela's model. Please simplify your answer in terms of \(x_{i}, y_{i}, \theta_{1}\) and \(n\).
\(\square\)
(ii) What is the value of \(\hat{\theta}_{1}\) that minimizes MSE? The critical point you find is guaranteed to be a minimum, so you do not need to prove that this point is a minimum. Please simplify your answer in terms of \(x_{i}, y_{i}\) and \(n\).
(b) [2 Pts] Shiny collects three data points, as shown in the table below. She wishes to use the same model from part (a) with \(\theta_{1}=\frac{1}{3}\). What is the Mean Absolute Error (MAE) of Shiny's model? Please simplify your answer.
\begin{tabular}{c|c}
\(x\) & \(y\) \\
\hline 1 & 5 \\
2 & 2 \\
4 & 9
\end{tabular}

As a reminder, this is the model from part (a): \(\hat{y}_{i}=\frac{1}{\theta_{1}} x_{i}\)
\(\mathrm{MAE}=\) \(\qquad\)
(c) [2 Pts] Angela wishes to use a constant model to predict each \(\hat{y}_{i}\). Which of the following methods could she utilize to always find the \(\hat{\theta}_{0}\) that minimizes MSE? Select all that apply.
A. Setting \(\hat{\theta}_{0}\) to the mean of \(y\).B. Setting \(\hat{\theta}_{0}\) to the median of \(y\).
\(\square\) C. Setting \(\hat{\theta}_{0}\) to the mode of \(y\).
D. Taking a derivative of the MSE function with respect to \(\theta_{0}\) and solving for the minima.
(d) [2 Pts] Consider the loss function Mean Cubed Error: \(\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{3}\). Which of the following statements are true for this loss function when used for a linear model? Select all that apply.A. Overpredictions are always penalized more than underpredictions.
B. Underpredictions are always penalized more than overpredictions.
C. Predictions that are closer to their true target value are sometimes penalized more than predictions that are farther from their true target value.D. There is a single, finite value of \(\theta\) which minimizes this loss function.

\section*{6 SOLS [10 Pts]}

It's the year 2124, and Yuerou and Mir are excited to lead an expedition to the planet Mars. They decide to use Ordinary Least Squares (OLS) to predict how many Martian days (also known as sols) their mission can last.
(a) [2 Pts] Yuerou begins by researching past missions to Mars. They store features in the design matrix \(\mathbb{X}^{\prime}\), with the first column representing the intercept term, the second column representing the number of portions of food brought on the missions, and the third column representing the number of astronauts. The vector \(\mathbb{Y}^{\prime}\) stores the duration of the missions in sols.

Yuerou finds the ideal weight vector to be \(\hat{\theta}=[-3,0.25,2]^{T}\).
(i) Holding all other variables constant, how many more sols would a mission last for each additional astronaut in the crew, according to this model?
\(\qquad\) additional sols
(ii) Suppose Yuerou stumbles across a mission with 20 food portions and 3 astronauts lasting 5 sols. What would be the residual of this model's prediction on this mission?
\(\square\)

For the remainder of this question, Mir creates a new dataset with more observations and more features. The new \(n \times p\) design matrix is denoted as \(\mathbb{X}\), and the new target variables are stored in the vector \(\mathbb{Y}\).
(b) [2 Pts] Which of the following statements are true regarding an OLS model involving \(\mathbb{X}, \mathbb{Y}\), and the ideal weight vector \(\hat{\theta}\) ? Select all that apply.
\(\square \mathrm{A} . \mathbb{Y}\) and \(\hat{\theta}\) have the same dimensionality.B. The residual vector \((\vec{e})\) is orthogonal to the span of \(\mathbb{X}\).C. The prediction vector (\(\hat{\mathbb{Y}}\)) is orthogonal to the span of \(\mathbb{X}\).D. \(\hat{\mathbb{Y}}\) has a shape of \(n \times 1\).
(c) [4 Pts] Mir has some troubles with his OLS model. For the following subparts, assume each scenario happens independently of one another.
(i) Mir calculates the ideal weight vector \(\hat{\theta}\) which minimizes MSE. He reruns OLS and finds a different weight vector \(\hat{\theta}^{\prime}\), which yields the same MSE. Mir is confident that this is the lowest possible MSE an OLS model can achieve. What is most likely the issue here?
A. One or more of the features is a linear combination of other features.
B. \(\hat{\mathbb{Y}}\) is not a linear combination of the columns of \(\mathbb{X}\).
C. The prediction vector \(\hat{\mathbb{Y}}\) is not in the span of the design matrix.
D. The model does not have an intercept term.
(ii) Mir runs OLS but finds all his residuals are negative. What is most likely the issue here?
A. One or more of the features is a linear combination of other features.
B. \(\hat{\mathbb{Y}}\) is not a linear combination of the columns of \(\mathbb{X}\).
C. The prediction vector \(\hat{\mathbb{Y}}\) is not in the span of the design matrix.

○ . The model does not have an intercept term.
(d) [2 Pts] Which conclusions could you make from the following residual plot resulting from a linear model? Select all that apply.
A. The model is consistently overpredicting.B. The model is consistently underpredicting.C. As \(x\) increases, the model performs worse.D. A linear model works well for this data.

You are done with the midterm! Congratulations!

Use this page to draw your favorite Data 100 moment!```

